
A new Sharing Paradigm for the Personal Cloud

Paul Tran-Van
1,2,3

, Nicolas Anciaux
2,3

 and Philippe Pucheral
2,3

1 Inria Saclay-Île-de-France, 1 rue d'Estienne d'Orves , 91120 Palaiseau, France
2 DAVID Lab., University of Versailles, 45 av. Etats-Unis, 78035 Versailles, France

3 Cozy Cloud, 158 rue de Verdun, 92800 Puteaux, France

first_name.last_name@inria.fr

Abstract. Pushed by recent legislation and smart disclosure initiatives, personal

cloud solutions emerge and hold the promise of giving the control back to the

individual on her data. However, this shift leaves the privacy and security issues

in user's hands, a role that few people can properly endorse. Considering the in-

adequacy of existing sharing models, we advocate the definition of a new shar-

ing paradigm dedicated to the personal cloud context. This sharing paradigm,

called SWYSWYK (Share What You See with Who You Know), allows to de-

rive intuitive sharing rules from the personal cloud content, to self-administer

the subjects and the sensitive permissions, and to visualize the net effects of the

sharing policy on the user's personal cloud. We then propose a reference archi-

tecture providing the users tangible guarantees about the enforcement of the

SWYSWYK policies. An instance of this architecture has been implemented on

top of an existing personal cloud platform to demonstrate the practicality of the

approach.

Keywords: Personal data sharing, personal cloud, self-administered policies.

1 Introduction

Today, smart disclosure initiatives are pushed by legislators (e.g., EU General Data

Protection regulation [1]) and industry-led consortiums (e.g., Blue Button for medical

records in the US, Midata in the UK, MesInfos in France) in order to enable individu-

als to get back their personal data from companies or administrations that collected

them. The Personal Cloud paradigm emerges (e.g., Cozy Cloud, ownCloud, SeaFile,

Databox) and holds the promise of a Privacy-by-Design storage and computing plat-

form where each individual can gather her complete digital environment in one place

and share it with applications and users under her control.

However, this gravity shift of data management from organizations to individuals

raises new fundamental issues. One of the founding principles of the Personal Cloud

paradigm is to enable individuals making sovereign decisions about the sharing of

their data, i.e., administering sharing rules to regulate data dissemination. This task is

difficult for regular users who are not database administrators nor security experts.

Indeed, the main existing access control models are not adapted to the personal cloud

context. Existing solutions are either geared towards central authorities, allowing

2

them to properly define users, roles and privileges thanks to robust models (e.g.,

RBAC, MAC, ABAC or TBAC [2]) or suggest decentralized tools to let individuals

manually define their sharing preferences (e.g., thanks to PGP, Web of Trust models

or Friend of a Friend (FOAF) dissemination rules [3]). The former approach is

adapted to a centralized database and requires a deep expertise in terms of administra-

tion and security. The latter puts all the cognitive load of defining sharing rules to the

user while providing tools of limited expressive power (privileges are declared manu-

ally on a user-resource case-by-case basis). Some solutions like [4] and [5] try to ex-

ploit machine learning techniques to automatically infer the best sharing policies but

they can lead to unexpected data leakage when the classification goes wrong.

We thus advocate the definition of a new sharing paradigm dedicated to the per-

sonal cloud context. How could regular users share the recent information obtained

from their quantified-self appliances with medical practitioners of their acquaintance?

How photos of an excursion can be shared with the relatives appearing in these same

photos? How to avoid personal pictures to be shared with working colleagues?

Our proposal builds upon the transversal nature of the content of a personal cloud

and makes easy and intuitive the definition and administration of sharing policies. The

personal cloud content intrinsically describes the individual's acquaintances under

different forms (e.g., contact files, agendas, identity pictures, address book entries,

etc.). Conversely, acquaintances are associated with pieces of information in the user's

space (e.g., photos on which a friend appears). New sharing models should be able to

map personal data to acquaintances (or subjects) and exploit their links with the stored

documents (or objects) to produce authorizations satisfying users' sharing desires such

as those expressed above. Interesting and common sharing rules could also be pub-

lished and adopted by the members of a community of interest. Beyond the definition

of the sharing policy, the sharing paradigm must provide means to the personal cloud

owner to easily understand the net effects of a sharing policy, identify suspicious

permissions and sanitize the sharing policy accordingly, and finally, to trust the way

the policy is practically enforced.

In this paper, we make the following contributions:

 we propose a new sharing paradigm called SWYSWYK (Share What You See

with Who You Know) which allows to automatically derive intuitive sharing

rules from a personal cloud content, to let each user visualize the net effects of

these rules on her own personal cloud and to finely customize data sharing ac-

cording to their own privacy concerns,

 we introduce a reference architecture for the SWYSWYK paradigm which helps

the user to administer her sharing policy and provides tangible guarantees about

its enforcement, and show the feasibility of our approach with an implementa-

tion combining an existing personal cloud platform and a secure personal device.

The rest of the paper is organized as follows. Section 2 presents related works and

Section 3 derives from them a problem statement. Section 4, 5 and 6 are devoted to

the aforementioned contributions, and Section 7 concludes.

3

2 Related Works

This section positions existing access control approaches with respect to the personal

cloud context, in order to introduce our problem statement in the next section.

Traditional database access control models. The access control management in

databases is well established and models like DAC, RBAC and MAC [2] are widely

supported. The question is whether or not such models can apply to the personal cloud

context. These models actually share the following characteristics: (1) the access con-

trol administration is a complex and critical task usually handled by a security expert;

(2) the applicative logic, the users and their roles are identified at an early stage of the

information system design, so that the access control policy is part of the database

schema definition and (3) these models are integrated in standards like SQL and bene-

fit from the expressive power of such languages. However, in a personal cloud con-

text, nothing of the above still holds. First, the administrator of a personal cloud is the

owner herself and, apart from rare exceptions, is not a technical expert. Second, usag-

es are difficult to predict because new appealing apps are produced at a high rate and

so are the interactions between users. Third, no central authority delivers a common

framework to identify unambiguously subjects and objects in a potential access con-

trol rule and no universal standard exist to define and manipulate them. These reasons

make traditional access control models not suitable for the personal cloud context.

Access Control in a Decentralized Setting. The decentralization aspect raises

new challenges starting with users' identification and authentication. To avoid any

confusion between users, let us call owner, the owner of a personal cloud and sub-

jects, the users willing to interact with the personal cloud owner. Web of Trust (WoT)

models have been investigated, allowing subjects to authenticate thanks to their public

key and are identified through social attestations [6] or public profiles [7], to which

access rights are associated and defined by the owner. It requires the owner to manu-

ally assign the authorizations, for each subject and for each object, which can quickly

become tedious and error-prone. [8] relies on a centralized trusted party for the au-

thentication. A second challenge is enforcing the access control rules, meaning pre-

venting confidentiality attacks over data to be shared. [9, 10, 11] focus on data en-

cryption in untrusted clouds, while [12] presents a decentralized alternative to social

networks based on ABE encryption. [13, 14] use obfuscation schemes, where data is

scrambled for the former and substituted for the latter. Access control policies are

implemented here by means of encryption but, again, this requires the owner to man-

ually define who can access which data on a case-by-case basis. Thus, the cognitive

load on the owner is such that it often leads to consider access control as an intracta-

ble burden, letting desperate owners define far too permissive policies [15].

User-friendly AC Administration. Several contributions have been proposed to

ease the access control administration by allowing the declaration of logic-based shar-

ing rules. [16, 17] propose rule frameworks based on fixed attributes, but do not cope

well with the versatile personal cloud context. Negative policies are also supported to

deal with exceptions that can occur in sharing policies. [18] defines an SQL-based

language to let applications create queryable views on the shared data, and transmit

capabilities to granted subjects. Some works propose to use existing user’s social

4

relationships as a convenient way to facilitate policies declaration. In [19], subjects

are granted access depending on their FOAF relationship properties, such as type,

graph depth, and a computed trust value. [20] adds web scraping on social networks

to retrieve common social events attendance. Finally, [4] and [5] focus on machine

learning techniques to automatically infer the best sharing policies. [4] takes small

manual input from the user and exploits its data on social networks, including profile

characteristics and relationships, to extract sharing communities patterns. [5] uses an

image classification module based on content and metadata from large images set, and

analyze the owner privacy preferences to predict the sharing policy for each of her

uploaded photos. These works both claim a good accuracy in the predicted policies

and can greatly ease the access control administration, but they can also lead to unex-

pected data leakage when the classification goes wrong. It is also not certain that

owners would accept to let an opaque algorithm scrutinize their data and their social

relationships.

3 Problem Formulation

This state of the art highlights two major difficulties that need to be circumvented

when designing a sharing model for the personal cloud context : (1) The owner is the

weakest link of the security chain: she is de facto the administrator of her personal

cloud platform, but it is illusory to expect her gaining expertise and spending time to

administer subjects, secure her personal cloud against all forms of attacks or use

tricky protocols to exchange cryptographic secrets with partners; and (2) personal

cloud usage is versatile and volatile: while traditional information systems are built to

support well identified services invoked by well identified users and applications, the

personal cloud world favors opportunistic usages and unpredictable interactions be-

tween users. We derive from these statements three major requirements for a sharing

model dedicated to the personal cloud:

 Enlighten empowerment. User's empowerment should be enlightened, meaning

that the effects of all owner’s decisions must be perceivable and understandable by

herself. We advocate the integration of a SWYSWYK (pronounce Swiss-week)

principle (Share What You See with Who You Know) in the definition of access

control policies. Roughly speaking, this means that the model should provide

means to derive intuitive sharing rules from the content of personal cloud docu-

ments and let the owner visualize the net effects of these rules on her personal

cloud.

 Self-sustaining administration. In the line of the SWYSWYK principle, the admin-

istration of subjects must be intuitive and (quasi) automatic, derived from the con-

tent of personal cloud documents and from regular actions performed by the owner

on these documents. As well, the owner should be offered simple means to finely

administer the effects of the sharing rules according to her own privacy concerns.

 Tangible enforcement. To give substance to the SWYSWYK principle, the logic of

the reference monitor enforcing the sharing policy must itself be perceivable and

understandable by the owner and the platform implementing this logic must be

5

trusted by her. Typically, we don't believe that a regular user can figure out the re-

sults of neither a powerful solver taking as input a set of positive and negative

sharing rules nor that she can trust a remote machine or her vulnerable computer to

run this logic. A side effect of the expected extreme simplicity of our model is that

the reference monitor could be embedded in a tamper-resistant personal device

kept in user's hand, thereby providing a physical element of trust.

Of course, these requirements are not enough to solve all the problems identified

above, but we believe they can lead to a more affordable and trusted sharing process.

4 SWYSWYK Model

As many existing proposals, SWYSWYK is a rule-based model, but our goal is not to

propose yet another more expressive rule-based access control model. The originality

of SWYSWYK lies in a few elementary core principles, which can be summarized as

follows: documents are rules and subjects and objects are documents. The combina-

tion of these principles gives birth to an access control model tackling important re-

quirements of the personal cloud context. We introduce here the model baselines and

semantics. Operational aspects are discussed in the next section.

4.1 Model baseline

Let us first illustrate the impact of enlightened empowerment in the access control

declaration. Sharing a picture with people appearing on it, sharing a document

minutes with the meeting attendees or an agenda entry with the corresponding rela-

tives should be straightforward to express. Subsequent permissions can be "derived"

from the documents' content, leading to our first core principle: documents are rules.

The subjects directly concerned with a document, also called identifiees [21], should

also be extracted from the document content and be identifiable as such to enter in the

rule definition. We call "reflexive sharing rules" the rules based on this principle. A

corollary of this is that each subject should correspond to a viewable personal cloud

document (i.e., subjects are documents), e.g., contact record, resume or picture. As

well, whether the result of a complex treatment over a set of documents needs to be

shared (e.g., an unintelligible computation over a set of smart meter measurements),

this treatment must output a viewable shared document (e.g., a curve of consump-

tion). The combination of documents are rules and subjects and objects are docu-

ments gives substance to the 'Share What You See with Who You Know' paradigm.

The impact of self-sustaining administration is also paramount, automating the sub-

ject declaration and maintenance (e.g., sharing meeting minutes with attendees could

automate the creation/updates of subjects). Regarding the tangible enforcement re-

quirement, the decision process must remain as simple as possible. And in any case

the administration of the sharing rules must remain in line with the privacy concerns

of the owner.

We show next how these principles can be integrated in a simple sharing model,

and let open the discussion of their integration in a more powerful/expressive model

or in traditional existing ones. Hence, we do a set of simplifying assumptions. First,

6

our model relies on a closed policy (every action not explicitly granted is denied).

Actions are CRUD operations on documents in the personal cloud. The model sup-

ports only authorizations (positive rules) and allows the owner to post-filter the Ac-

cess Control List (ACL) produced when exceptions need to be declared. Consequent-

ly, there is a direct translation between sharing rules and sets of ACLs. An action a is

granted to subject s on document d iff (s,d,a)  ACL and is denied otherwise. The

model is by construction consistent (the decision is unique), complete (the decision

always exists) and can finally be evaluated in logarithmic time.

4.2 Sharing Model Semantics

Reflexive sharing rules implement the documents are rules principle, and are thus

considered as first-class citizen rules in SWYSWYK. Such rules express the sharing

of documents with subjects directly concerned with those documents. We introduce

below a set of notations required to define the semantics of reflexive sharing rules.

D: set of all documents in a personal cloud (by extension, set of all DocId).

S: set of all subjects in a personal cloud (by extension, set of all SubjectId).

A: set of actions which can be performed on elements of D.

Q: set of qualifications which can be expressed on elements of D with the host lan-

guage of the personal cloud (we do not make any assumption on this language).

IT: set of identification traits uniquely linked to any element of S (e.g., ssn, <last-

name, {firstname}>, pseudo, phone n°, docId of a contact entry...).

Let us now consider the following relations and functions:

ACL  SDA: set of Access Control Lists.

Allowed: SDA→{true, false}: characterizes the access control

Allowed (s, d, a) = true iff (< s, d, a >  ACL)

 = false otherwise

SI: S→IT: delivers all known identification traits of any element of S.

MatchS: Ƥ(IT)Ƥ(IT)→{true, false} where Ƥ is the powerset of a set. MatchS eval-

uates the pairwise correspondence between subjects by comparing ITs.

MatchS(ident1, ident2) = true iff (ident1ident2 )

 = false otherwise

IsS: D→S : gives the unique element of S characterized by a document or  (ab-

sence of value) if the document does not correspond to any subject. IsS is surjec-

tive, i.e., (sS, dD / IsS(d)=s), meaning that each subject is represented by

an existing (viewable) document in the personal cloud.

Two additional functions are independent of the access control logic and could be

provided by communities or personal cloud providers. For the sake of genericity, they

are considered as user-defined functions (UDFs) in the model:

DI: D → Ƥ(IT)  : delivers the identification traits (potentially from multiple sub-

jects) contained in a document or . Example of a DI could be a facial recogni-

tion function for pictures or a function extracting identification traits (e.g. email

addresses, phone numbers) from a text document.

Filter: D  Q → {true, false}: evaluates whether dD matches a qualification Q.

Filters are used to form subsets of documents satisfying a given criteria. Filters

7

are personal cloud platform dependent. They are assumed to select documents

either based on their content or on metadata (e.g., type, creator, date, tags) at-

tached to each document by the personal cloud.

Reflexive sharing rules. Thanks to the above notations, reflexive sharing rules can be

expressed as follow:

ACL  {(s,d,a)  SDA / Filter1(d,Q)  MatchS(DI(d), SI(s)) }

Examples of reflexive sharing rules follow for illustration purpose:

Example 1. Share the minutes of meetings with the corresponding attendees:

 Q: docName like '../Meetings/minutes-%.doc'

 DI: extract attendee names from a minute document

Example 2. Share the photo gallery 'MyBirthday 2016' with people who appear in

the pictures:

 Q: docType = '.jpg'  tagGallery = 'MyBirthday 2016'

 DI: face recognition function from .jpg files

For this example, profile pictures linked to contact forms could be used to recog-

nize the faces with a trained model.

It is likely that reflexive rules apply additional restrictions over the subjects identi-

fied in documents, leading to the following more complete definition of reflexive rule:

ACL  {(s,d,a)  SDA / Filter1(d,Q)  MatchS(DI(d), SI(s))

  d'D, Filter2(d',Q')  (IsS(d')=s) }

Example 3. Share the minutes of a meeting held in Paris on March 12th 2017 with

the members of my team attending the meeting:

 Q: docId = /lib1/lib2/minutes-Paris-120317.doc

 Q': docType = '.vcf'  tagStatus = 'Team member'

 DI: extract attendee names from a minute document

Basic sharing rules. Non reflexive rules can also easily be supported by the model.

In particular, the usual rules sharing a selection of documents (Filter1) with a selection

of subjects (Filter2), called basic rules, are expressed as follows:

ACL  {(s,d,a)  SDA / d'D, Filter2(d',Q')  IsS(d')=s  Filter1(d,Q)}

Example 4. Share document PCloud/MedicalFolder/Myheartbeat with doctors:

Q: docId = PCloud/MedicalFolder/Myheartbeat

Q': docType = 'contact'  tagStatus = 'Physician'

Example 5. Share the photo gallery 'MyNewPaintings' with my friends:

Q: docType = 'photo'  tagGallery = 'MyNewPaintings'

Q': docType = 'contact'  tagStatus = 'Friend'

Example 6. Share my calorie intakes of the last 3 months with my family doctor:

Q: docType = '.xls'  tagContent = 'calorie'  Date  'CurrentDate  3 month'

Q': docType = '.vcf'  tagStatus = 'Family doctor'

4.3 Administration Model

The subject declaration and maintenance must be (quasi) automatic and the owner

should be able to apply her own privacy concerns while administrating rules and per-

8

missions. We first introduce the notion of rule consistency, which concretizes the fact

that the effects of all rules can be visualized. Then, we show how owner's specific

privacy concerns are supported by means of exceptions without introducing any com-

plexity. Third, we explain how subject administration can be performed transparently

as a constituent part of the sharing rules.

Rules Consistency. A SWYSWYK sharing rule is said well-formed iff it produces

only ACLs involving viewable documents shared with recognizable subjects. More

notations are introduced here related to the SWYSWYK-like administration.

DV  D: the subset of documents being viewable (in the interpretable sense) by the

owner. In other words, DV = {dD / Viewer(d)} with Viewer an application

trusted by the owner (e.g., certified by an authority or a community of users)

which delivers an interpretable view of the document to the owner (e.g., poten-

tially transforms a binary format into a text, an image or a graphic).

DS  DV: set of viewable documents characterizing a unique subject (e.g., a vCard

file, a resume, a photo labeled with a subject ID).

DI  D: set of documents containing identification traits of subjects or identifiees

(e.g., an agenda, a photo of a group of people, the meeting minutes).

SR: set of all sharing rules defined by the owner.

Based on these notations, the SWYSWYK sharing rules are well-formed iff

srSR, aclACL, acl.dDV  acl.sDS. Any acl which does not satisfy this con-

dition will be filtered out.

Rules Exceptions. We enacted as a design principle the fact to consider a closed poli-

cy and to allow only the declaration of positive rules (i.e., authorizations). We exclude

negative rules (i.e., interdictions) because we consider that a common owner cannot

easily figure out the output of a policy mixing potentially conflicting positive and

negative rules, making the cognitive cost of administering his policy out of reach.

Thus, instead of enriching the model semantics to capture authorizations and interdic-

tions, we simply give the owner the ability to filter out a posteriori some permissions

which may hurt her privacy (considered as exceptions). Hence, the resulting logic of

the reference monitor remains straightforward, thereby complying with the tangible

enforcement property. As explained below, an administration GUI is devoted to this

task.

An ACL can be considered suspicious either because it involves a sensitive subject

(e.g., my manager) or a sensitive object (e.g., a compromising picture or a part of my

medical folder) or because the association between a particular subject and object

may itself be compromising (e.g., I'm not ready to share all my holiday pictures with

my colleagues, even if I trust them and if most of these pictures are not sensitive).

Based on such information, we consider three types of enquiry queries, respectively

targeting sensitive subjects, sensitive objects and sensitive associations between them,

where ACL
?
 denotes a set of newly generated ACLs:

What(QS, A)  {(s,{(d,a)}) / (s,d,a)ACL
?
  sQS(S)

 a=A}: identifies, for each

selected (sensitive) subject, the new set of action a they are granted to perform

on which documents d (e.g., "which new documents can be seen by my boss?").

9

Who(QD, A)  {(d,{(s,a)}) / (s,d,a)ACL
?
 dQD(D)

 a=A}: identifies, for each

sensitive document d, the new set of subjects s with granted action a on them

(e.g., "which new subjects have a read access to my medical records?").

Which(QS, QD, A)  {(s,d,a) / (s,d,a)ACL
?
  sQS(S)  dQD(D)  a=A}: identi-

fies new ACLs combining a selection of (sensitive) subjects and documents

(e.g., "which new authorizations my colleagues have on my family photos?").

An administration GUI lets the data owner declare suspicion clauses, that is select

sensitive subjects (i.e., QS(S) clauses), sensitive documents (i.e., QD(D) clauses) and

compromising association (i.e., pairs of (QS(S), QD(D)) clauses). The inquiry queries

What, Who and Which based on these clauses are watchdog triggers evaluated on any

new set of ACLs produced by sharing rules. Certain suspicious ACLs are then identi-

fied and need the owner's validation that can be easily done through the GUI. This

guarantees that no unwanted disclosure will be done on sensitive data.

Subjects Administration. The administration of subjects is usually one of the most

cumbersome task for a owner. The objective here is to make this task as transparent as

possible, extracting the subject definition from the documents themselves and from

the rules declaration. Let us first detail the structure of S. S can be represented by a

table of schema (Sid: S, Did: Ƥ(DS), It: Ƥ(IT), [Ct: CONTACT], [Auth: {(AUTH, cre-

dential)}]), where Sid is the subject identifier, Did is a (set of) document identifier(s)

referencing document(s) representing this unique subject on personal cloud, It is the

(set of) identification trait(s) of this subject, Ct and Auth are optional personal cloud

dependent information required to notify and authenticate the granted subjects. New

subjects are registered in S as side-effects of the function IsS(d) (algorithm below).

Function IsS

Input: d  D

Output: s  S if d corresponds to a recog-

nized subject or  otherwise

1. if  s  S / MatchS(DI(d), SI(s)) then

2. s.It  s.It  DI(d)

3. else if RegistrationAgreement() then

4. s  NewSid()

5. S  < s, d, DI(d), [Ct(s)], [Auth(s)] >

6. DS  d

7. else s  

8. return s

Algorithm 1. Function IsS Fig. 1. ACL Production.

IsS is automatically invoked (1) each time DS documents are created or updated in

the personal cloud (e.g., contacts documents, resumes, etc., as determined by the per-

sonal cloud platform) and (2) each time a new rule invoking IsS is defined. If at least

one identification trait present in document d matches an existing subject s, s is re-

turned and s.It is potentially enriched with the other identification traits present in d.

If no correspondence is found, the owner may be asked on the fly to accept the regis-

tration of a new subject based on d content. Otherwise, IsS fails and  is returned.

Filter

{docs}

{d}

DI

{d,{It}}

IsS S

Personal

Cloud

FilterQ

{docs}

(a) Basic Rule

{s}{d}

SBRDBR

(b) Reflexive Rule

Filter Q’

{docs}

{d}

DI

{d,{It}}

IsS S

{s}

MatchS

SI

{s,{It}}

FilterQ

{docs}

{d}

DI

{d,{It}}

GRR

{(s,d)}

Data flow

Q’

Personal

Cloud

Personal

Cloud

Personal

Cloud

Operator

Materialized data

10

Hence the set of subjects automatically grows along document insertions and rule

declarations with minimal owner interaction. The owner may however wish to disam-

biguate from time to time the content of S through an administration GUI (e.g., merge

duplicates in situations like 'John Doe's.It and 'john@doe.io's'.It). Smart mecha-

nisms may help, like relying on FOAF [3] and trying to parse the public pages of

friend users to discover their identification traits, but this is let for future works.

5 Operational Semantics

We discuss here operational and architectural baselines in SWYSWYK, which are

critical to enable a secure implementation of the model.

5.1 SWYSWYK Operational Baselines

The creation, maintenance and evaluation of a set of SWYSWYK permissions is as

follows: (1) the owner creates sharing rules and suspicion clauses to be applied on her

personal cloud; (2) a rule translator translates the selected rules into candidate and

suspicious ACLs; (3) the owner checks the produced ACLs at will and accepts or

rejects the suspicious ones using the administration GUI; (4) the reference monitor

authenticates subjects and evaluates Allowed(s,d,a) calls to true or false and delivers

the requested documents accordingly; and (5) new subjects are automatically integrat-

ed in the owner's personal cloud at document insertion and rule translation time.

Steps (3) and (5) are unusual in the access control management. Step (5) contrib-

utes to the self-sustaining administration property and step (3) gives form to the en-

lighten empowerment property by pushing the owner to check the net effect of sharing

rules. The administration GUI helps the owner turning each new ACL
?
 element either

into an accepted permission (called ACL
+
) or an exception (called ACL


). The ACL

+

set is the sole to be considered by the reference monitor when making access deci-

sions. ACL

 is similar to exceptions of a positive rule and is materialized to automati-

cally filter out unexpected authorizations in subsequent runs of the rule translator,

without owner intervention. Hence, in contrast to rule-based reference monitors, the

logic of a SWYSWYK reference monitor can be trivially understood by anyone (op-

eration a on d is granted to s iff (s,d,a) ACL+) and contributes itself to enlighten

empowerment.

5.2 Sharing Rules Constructs and Management

Our model is based on the materialization of all ACLs, which makes the evaluation of

the Allowed function trivial and enables the user to visualize and filter the reference

monitor effects. As shown on Fig. 1, five physical operators are required to express

any basic or reflexive sharing rule, namely Filter, DI, SI, IsS, MatchS. The semantics

of these operators are equivalent to their functional counterparts presented in Section

3 and thus are not recalled. The main difference is that each operator implements the

corresponding function in a set-oriented way. For instance, Filter operator applies to

all documents of D and returns the subset of documents satisfying condition Q. The

11

flow of data consumed and produced by the operators is presented in Fig. 1 for the

translation of basic and reflexive rules into ACLs.

At declaration time, the rule translator must evaluate a new sharing rule over all

documents of the personal cloud. For a basic rule, it applies a filter at the leaf of each

branch (i.e., selection of targeted subjects on the right branch and of targeted docu-

ments on the left branch). Then DI operator extracts the list of ITs from the targeted

subject documents while IsS tries to match these ITs with the subjects already regis-

tered in S. As discussed in Section 4.3, IsS operator may have side-effects to dynami-

cally populate S when unknown subjects are encountered. Finally, for a basic rule BR,

the right branch feeds the SBR structure while the left branch feeds the DBR structure

registering the produced (candidate) ACLs. The operator tree of reflexive rules fol-

lows the same logic, except that left and right branches must be joined on subject ITs

and produce (candidate) ACLs on the GRR structure.

Each time a new document d is inserted into the personal cloud, the filters of each

branch of all rules are evaluated against d to check whether new candidate ACLs can

be produced. While this cost is rather low for basic rules, the MatchS operator at the

root of the reflexive rule tree may incur a full re-scan of the left branch on personal

cloud (e.g., a subject s inserted at time t2 may match with a document d inserted at

time t1 < t2, while this association was not detectable at time t1). We introduce an addi-

tional structure registering pending reflexive associations between subjects and doc-

uments to alleviate this cost (see Section 6). Whether a document d is deleted from

the personal cloud, any entry referencing d in SBR, DBR and GRR must be removed.

5.3 Reference Architecture and Enforcement

Although formally proving the security of an architecture for SWYSWYK is out of

the scope of this paper, this section introduces an abstract architecture implementing

the model while providing the tangible enforcement property. We consider an archi-

tecture made of (1) an untrusted environment (UE) on which no security assumption

is made, (2) an isolated environment (IE) on which code can run with the guarantee

that its execution is isolated from UE and (3) a Secure Execution Environment (SEE)

which protects data and code against snooping and tampering.

Since no specific security assumption can be made on the personal cloud platform,

it is part of the UE. All the documents of the personal cloud are thus stored encrypted

and can be decrypted only by the reference monitor, which acts as an incorruptible

doorkeeper for the personal cloud. Whenever an Allowed(s,d,a) request is evaluated to

true, document d is decrypted in the SEE before being delivered to subject s. The

reference monitor resides in the SEE and given its simplicity, can be hosted in many

kinds of tamper-resistant SEE (e.g., SIM cards in smartphones, secure personal tokens

[22, 23]). Data structures like SR, the set of sharing rules activated by the owner, S,

the set of subjects in relation with the owner, and ACL
?
, ACL

+
 and ACL


 are stored in

the SEE.

The rule translator updates these internal data structures. IsS, MatchS and SI are

internal operators running inside the SEE. Filter and DI must be extensible (e.g., inte-

grate existing libraries) and thus cannot be stored in the SEE. However, they need to

12

access large portions of the personal cloud, leading to potential risks of information

disclosure if observed or corrupted. Thus, Filter and DI are running in isolated con-

tainers
1
 in the IE. The Administration GUI and the document viewers, which involve

interactions with the owner, also run in IE.

Several physical instances of this architecture are possible. The experimental plat-

form presented in the next section is an extreme case, but other target architectures

could be envisioned. For example, a certified hypervisor running on top of an Intel

SGX processor [24] on the personal computer itself can provide a logical implementa-

tion of IE. Smart devices equipped with a SIM card (embedding the reference moni-

tor), a flash memory card (embedding the encrypted internal data structures) and an

ARM Trustzone processor [25] (running UDFs and administration tools) are other

interesting options.

6 Experimental Platform

We consider here a specific instance of the SWYSWYK architecture combining Cozy

(open-source personal cloud, see: https://cozy.io/) and PlugDB (developed at Inria,

see: https://project.inria.fr/plugdb/). The personal device has a 3GHz Intel Xeon E5-

1660 CPU, 8 GB of RAM and a 500 GB 10.000 RPM hard drive. PlugDB uses a

STM32F417GH6 MCU with a 168 MHz ARM Cortex M4 CPU, 192 KB of RAM

and 1 MB of NOR storage. The Raspberry Pi 3 has a 1.2GHz ARMv8 CPU and 1 GB

of RAM. We use an external UHS-I microSD card of 16 GB for both SEE and IE. A

video of the experimental platform and its usability is available
2
.

The Cozy system runs on a

personal device linked to the

network (Internet) and repre-

sents the UE.

The secure parts of the refer-

ence monitor runs on PlugDB
(the SEE), communicates with

UE in WiFi (IEEE802.11n)

and with IE in USB2.

The admin. GUI and UDFs

are installed on a Raspberry Pi

without any network connec-
tion, which represents the IE.

Fig. 2. Experiment platform: software and hardware (right).

Environmental cost. The environmental cost to insert a new document in the per-

sonal cloud is pictured in Fig.3(left). The 4 components of this cost are: (1) transfer

cost of the document between UE and SEE (in cleartext from UE to SEE and in en-

crypted form back), (2) document encryption cost in SEE, (3) insertion of the en-

1 In practice, isolated containers can be implemented using a dedicated hardware platform (physical isola-

tion), an hypervisor or a microkernel. Recent hardware advances propose an hardware support for run-
ning isolated code, e.g., using ARM Trustzone [2] or SGX processors [9].

2 http://wanda.inria.fr/CIKM/cikm.ogg

UDF: DI1

Admin GUI

UDF: Filter
…

Cozy

system

MiloDB

Refererence

Monitor
Allowed,Who,What..

Secrets
Keys

…

Raspberry PI

PlugDB

Personal device
Personal

cloud

database CouchDB

ACLs
S, ...

Is
o

la
te

d
E

n
v

ir
o

n
m

en
t

U
n

tr
u

st
ed

E
n

v
ir

o
n

m
en

t
S

ec
u

re
 E

x
ec

.
E

n
v

ir
o

n
m

en
t

SD card

(database)

Wifi

Fingerprint

Secure chip

(secrets)

MCU

USB

(MiloDB, SSF)

13

crypted document in Cozy and (4) transfer cost of the cleartext document from SEE to

IE (which applies Filter and DI on sharing rules). Step 4 (USB transfer) can be per-

formed in parallel with the other steps, explaining why we isolate that cost in Fig. 3.

Rules and data sets. In Table 1, we introduce the rules and data sets used in the

experiments to measure the performance at rule translation time (i.e., initialization

cost incurred by a rule creation and maintenance cost of a rule when new documents

are inserted). We define four different rules representative of basic and reflexive rules,

with Big and Small output sizes in terms of the number of produced ACLs.

Table 1. Sharing rules considered in the experiments. E.g., Big BR is a big basic rule quali-

fying 1.000 documents on the predicate type='cardio' and 10 subjects on type='health communi-

ty' resulting in 10K ACLs (this rule corresponds to a quantified-self context).

Rule name Filter on D Filter on S #results: D, S, ACLs

Small BR type = ‘directory’ & name = ‘team’ type = ‘contact’ & group = ‘team’ 10, 5, 50

Big BR type = ‘cardio’ type = ‘health community’ 1.000, 10, 10.000

Small RR type = ‘note’ type = ‘contact’ & group = ‘lab’ 10, 30, 50

Big RR type = ‘album’ & tag = ‘holidays’ type = ‘contact’ & group = ‘friends’ 1.000, 200, 5.000

Rule translation. In Cozy, documents are formatted in JSON with a set of key-

values, potentially associated to a binary file. Simple implementations of Filter and

DI check a set of filtering conditions and extract the ITs needed to subsequently iden-

tify the subject(s) based on the document key-value pairs. More complex implementa-

tions deal with the binary part of the document, e.g., image recognition or classifica-

tion. SI, IsS and MatchS are implemented in PlugDB on the MiloDB [3] RDBMS. The

SBR, DBR, GRR and Gexcept data structures used to materialize ACL
+
, ACL

-
 and ACL

?
 are

mapped in MiloDB relational tables. Tables BRD(Rid int, Did char(32), A char(1))

and BRS(Rid int, Sid int) materialize the union of SBR and DBR for all basic rules BR,

with Rid the identifier of a basic rule granting authorization A on document Did (ids

in Cozy are 32 bytes) to subject Sid. Tables RR and Except, of schema (Sid int, Did

char(32), A char(1)), respectively materialize GRR and GExcept. The set of ACL
?
 are

stored in 3 tables BRD?, BRS? and RR? with the same schema as respectively BRD,

BRS and RR. The subjects and their identification traits are stored in table SIT (Sid int,

IT varchar). SI, IsS, MatchS, as well as Allowed and Who, What, Which can trivially

be implemented as SQL queries on these tables.

Initialization. At creation time, each sharing rule must be evaluated over all the

documents of the personal cloud. This generates the environment costs shown in Fig.

3(left) for each document plus the time to evaluate the Filters of the rule and the re-

maining part of the rule evaluation tree if the document is qualified. To evaluate this

cost, we generate documents with an average size of 1 KB which is typical for Cozy

documents with no binary part. We assume large binary files don’t impact the overall

cost as the Filters first check the metadata and rule out the files without the expected

type. Fig.3(middle) plots the time spent to run the initialization process for each rule

of Table 1, depending on the number of considered documents. Conclusions are as

follows: (i) the initialization cost of rule creation is acceptable; (ii) the environmental

cost represents half of the total cost and is mainly due to communications between

SEE, IE and UE which could largely be saved with other settings (e.g., Trustzone or

SGX); and (iii) apart from environment costs, the cost of evaluating Filters is pre-

14

dominant because of the number of iterations (1 evaluation per document and rule)

but not because of the cost of an elementary filter.

Maintenance. Each time a document d is inserted, the Filters of all rules are eval-

uated against d to check whether new ACLs can be produced. This is not an issue for

basic rules, but may lead to a rescan of the personal cloud for reflexive rules if pend-

ing reflexive associations between subjects and documents are not maintained. To this

end, we create table RD(Rid int, Did char(32), IT varchar) to record the rules and doc

id pairs along with any identification trait which did not match an existing subject at

the current time. Conversely, table HR(Rid int, Sid int) records the subjects ids quali-

fied by that reflexive rule in order to detect an association with a future inserted doc-

ument referencing one of these subjects. Given the shape of the operator trees (Fig. 1)

the maintenance cost is determined by (1) the Filters evaluation for all active rules

and (2) the cost of IsS when the document is qualified by Filter. Indeed, IsS cost de-

pends on the cardinality of S and on the number of ITs S holds. Fig. 3(right) indicates

the number of subjects and ITs per subject which remains compatible with the inser-

tion of a document in less than 1s for a given number of rules. To vary the number of

rules, we generate new rules having the same characteristics as the ones shown in

Table 1. The maintenance cost for BR rules (not reported) always remains under

2.5ms per document, as it is independent of the number of subjects. Given Fig.

3(right), there is no performance issue linked to ACL maintenance (with 100 RR rules

and without resorting on indexes, we can manage more than 1.000 subjects with 7 ITs

for a maintenance cost of less than 1s per inserted document.

Fig. 3. Environmental costs for one document (left curve), rule initialization costs (middle) and

rule maintenance costs in function of the subjects cardinality (right).

7 Conclusion

This paper introduces a new sharing paradigm for the personal cloud, called

SWYSWYK (Share What You See with Who You Know), empowering individuals

with new means to regulate by themselves the dissemination of their data with tangi-

ble enforcement guarantees. The model allows the expression of intuitive reflexive

rules and lets the owner visualizes the net effects of these rules. Subjects are self-

administered by design at rule translation and document insertion. We proposed an

architecture to enforce the model and shown its feasibility through a performance

evaluation performed on a secure DB engine (PlugDB) linked to an existing personal

cloud platform (Cozy). While the personal cloud paradigm is pushed by recent legis-

lation and smart disclosure initiatives, finding new ways to intuitively and securely

0

200

400

600

800

1000

1 KB 100 KB 1 MB

T
im

e
 (
m

s)

USB transfer
PCloud access
WiFi transfer
Encryption

1

10

100

1000

10000

10 000 100 000 1 000 000

E
x

e
c
. t

im
e
 (

s)

Number of documents

Environment
small BR
big BR
small RR

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r
 o

f
su

b
je

c
ts

Number of IT per subject

1 RR

100 RR

Evaluation < 1s

Evaluation > 1s

15

share personal data is paramount. We hope that this work actively contributes to this

challenge.

References

1. Regulation (EU) 2016/679 on the protection of natural persons with regard to the pro-

cessing of personal data and on the free movement of such data. 27 April 2016.

2. Bertino, E., Ghinita, G., and Kamra, A. (2011). Access control for databases: Concepts and

systems. Foundations and Trends in Databases, 3(1-2).

3. Brickley, D., and Miller, L. FOAF vocabulary specification 0.91. TR ILRT Bristol, 2007.

4. Fang, L., LeFevre, K. Privacy wizards for social networking sites. In ACM WWW, 2010.

5. Squicciarini, A.C., Sundareswaran, et al. A3P: adaptive policy prediction for shared imag-

es over popular content sharing sites. In ACM Hypertext and hypermedia (HT), 2011.

6. Tootoonchian, A., Saroiu, S., Ganjali, Y., and Wolman A. Lockr: better privacy for social

networks. In Conf. Emerging networking experiments and technologies (CoNEXT), 2009.

7. Van Kleek, M., Smith, D.A., Shadbolt, N., and schraefel, m.c. A decentralized architecture

for consolidating personal information ecosystems: The WebBox. In PIM, 2012.

8. Seong, S-W., Seo, J., Nasielski, M., Sengupta, D., et al. PrPl: a decentralized social net-

working infrastructure. In ACM Mobile Cloud Computing & Services (MCS), 2010.

9. Ali, M., et al. (2015). SeDaSC: secure data sharing in clouds. IEEE Systems Journal.

10. Thilakanathan, D., Chen, S., Nepal, S., and Calvo, R.A. Secure Data Sharing in the Cloud.

In Security, Privacy and Trust in Cloud Systems, 2014.

11. Wang, F., et al. Cryptographically Enforced Access Control for User Data in Untrusted

Clouds. In USENIX Symposium on Networked Syst. Design and Implem. (NSDI), 2016.

12. Baden, R., Bender, A., Spring, N., et al. Persona: an online social network with user-

defined privacy. ACM SIGCOMM Comp. Com. Review, 39(4), 2009.

13. Guha, S., Tang, K., and Francis, P. NOYB: Privacy in online social networks. In ACM

workshop on Online Social Net., 2008.

14. Yuan, L., et al. Privacy-preserving photo sharing based on a secure JPEG. In CCC, 2015.

15. Liu, Y., Gummadi, K. P., Krishnamurthy, B., and Mislove, A. Analyzing facebook privacy

settings: user expectations vs. reality. In ACM SIGCOMM, 2011.

16. Mazurek, M.L., Liang, Y., et al. Toward strong, usable access control for shared distribut-

ed data. In USENIX conference on File and Storage Technologies (FAST), 2014.

17. Wang L., Wijesekera D., and Jajodia S. A Logic-based Framework for Attribute based Ac-

cess Control. In ACM workshop on Formal methods in security engineering (FMSE), 2004

18. Geambasu, R., Balazinska, M., Gribble, S.D., and Levy, H.M. Homeviews: peer-to-peer

middleware for personal data sharing applications. In ACM SIGMOD, 2007.

19. Carminati, B., Ferrari, E., and Perego, A. Rule-Based Access Control for Social Networks.

In On the Move to Meaningful Internet Systems, 2006.

20. Mori, J., Sugiyama, T., and Matsuo, Y. Real-world oriented information sharing using so-

cial networks. In ACM SIGGROUP (GROUP), 2005.

21. Park, J., Sandhu, R. (2004). The UCON ABC usage control model. In ACM TISSEC, 7(1).

22. Anciaux, N., Bouganim, L., Pucheral, P., Guo, Y., Le Folgoc, L., and Yin, S. MILo-DB: a

personal, secure and portable database machine. In DAPD, 32(1), 2014.

23. Anciaux, N., Lallali, S., Popa, I. S., and Pucheral, P. A scalable search engine for mass

storage smart objects. In PVLDB, 8(9), 2015.

24. Costan, V., and Devadas, S. Intel SGX Explained. IACR Cryptology ePrint Archive, 2016.

25. Alves, T., and Felton, D. Trustzone: Integrated hardware and software security. ARM

white paper, 3(4), 2004.

